Exam. Code : 211001
 Subject Code : 4847

M.Sc. Mathematics $1^{\text {st }}$ Semester COMPLEX ANALYSIS
 Paper-MATH-552

Time Allowed-Three Hours] [Maximum Marks-100 Note :-Attempt FIVE questions in all, selecting at least ONE question from each section. The fifth question may be attempted from any section. All questions carry equal marks.

SECTION-A

1. (a) Show that a function $f(z)=u(x, y)+i v(x, y)$ is analytic in a domain iff v is a harmonic conjugate of u.
(b) Prove that:

$$
\frac{d w}{d z}=e^{-i \theta} \frac{\partial w}{\partial r}=-\frac{1}{r} e^{-i \theta} \frac{\partial w}{\partial \theta} .
$$

2. State and prove Cauchy's integral theorem.

SECTION-B
3. (a) State and prove Poisson's integral formula.
(b) Show that each analytic function with nonvanishing derivative is conformal in each region.
4. (a) Define cross-ratio. Show that cross-ratio are invariant under a bilinear transformation.
(b) Show that the power series $\sum_{n=q}^{\infty} z^{3^{n}}$ cannot be continued analytically beyond the circle $|\mathrm{z}|=1$.

SECTION-C

5. (a) Show that $\exp \left[\frac{c}{2}\left(z-\frac{1}{z}\right)\right]=\sum_{n=-\infty}^{\infty} a_{n} z^{n}$ where

$$
a_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos (n \theta-c \sin \theta) d \theta
$$

(b) State and prove Schwarz's lemma.
6. (a) State and prove Argument principle.
(b) Apply Rouche's theorem to find the number of zeros of the polynomial $2 z^{4}-2 z^{3}+z^{2}+11$ inside the circle $|z|=1$.

SECTION-D

7. (a) Find the residues at the poles of the function

$$
\frac{z^{4}}{\left(c^{2}+z^{2}\right)^{4}}
$$

(b) Evaluate $\int_{0}^{\pi} \frac{a d \phi}{a^{2}+\cos ^{2} \phi}$, where a is positive.
8. (a) State and prove Jordan's lemma.
(b) Apply the calculus of residues to prove that :

$$
\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{3}}=\frac{3 \pi}{8}
$$

